NS102 Lecture 13

News of the week

- No office hours today
- Lab this week: 2nd week of geometry of the universe
- Lab next week: The Hubble constant
- Exam #2: May 20th
- Last lecture: Tuesday June 1st
- Final Exam: Tuesday, June 8th, 10:30am-12:30pm

Modern laws of Genesis

(10 nonlinear partial differential equations)

"When the Special Theory of Relativity began to germinate in me, I was visited by all sorts of nervous conflicts... I used to go away for weeks in a state of confusion."

"A storm broke loose in my mind."

Einstein, ca. 1905

Albert Einstein 1879-1955

I see in Nature a magnificent structure... that must fill a thinking person with a feeling of humility..."

Two famous Rhodes Scholars:

Politics is for the moment; an equation is forever.

A. Einstein

Famous and not so famous :

Jessica Simpson

Michael Jackson

John Bardeen

$$\frac{\lambda - \lambda_0}{\lambda_0} = z$$

$$\lambda$$
 detected wavelength

$$\lambda_0$$
 emitted wavelength

If
$$v/c < 1$$
,
then $z = v/c$

V recessional velocity

c velocity of light

$$c = 3 \times 10^5 \text{ km s}^{-1}$$

Hubble's law:

$$\mathbf{v} = H_0 d \to cz = H_0 d$$

We are not the center of the expansion of the universe Every galaxy sees the expansion

Cosmological Principle

The universe is the same everywhere

- no special point in the universe (no center)
- no special set of points (no edge)

Spaces that obey the cosmological principle:

1-dimension:

$${}^{1}R \longleftrightarrow x$$

$$V = \int_{-\infty}^{\infty} dx = \infty$$

$${}^{1}S \qquad \begin{pmatrix} R \\ P \\ X^{2} + Y^{2} = R^{2} \end{pmatrix}$$

$$V = R \int_{0}^{2\pi} d\phi = 2\pi R$$

Spaces that obey the cosmological principle:

Spaces that obey the cosmological principle:

$$\frac{3\text{-dimensions:}}{3}R$$

$$V = \int_{-\infty}^{\infty} dx \int_{-\infty}^{\infty} dy \int_{-\infty}^{\infty} dz = \infty$$

$${}^{3}S \qquad V = R^{3} \int_{0}^{\pi} \sin^{2} \chi \, d\chi \int_{0}^{\pi} \sin \theta \, d\theta \int_{0}^{2\pi} d\phi = 2\pi^{2} R^{3}$$

$$x^2 + y^2 + z^2 + w^2 = R^2$$

ZERO CURVATURE POSITIVE CURVATURE **NEGATIVE CURVATURE**

FLAT SPHERICAL HYPERBOLIC

The expansion of the universe is

an explosion of space

<u>not</u>

an explosion into space

This is not the big bang!

This is not the big bang!

Hubble's Discovery Paper - 1929

Distance (parsecs)

Why a blue shift for nearby galaxies?

 $(H_0=100 \text{ km s}^{-1} \text{ Mpc}^{-1})$ Hubble's Law: $v = H_0 d$ 400 velocity (km s⁻¹) 300 200 100 distance (Mpc)

The Hubble age of the universe

$$H_0 = 100h \text{ km} \frac{1}{\text{s}} \frac{1}{\text{Mpc}} \times \frac{1 \text{ Mpc}}{3 \times 10^{19} \text{ km}}$$

$$(0.8 \ge h \ge 0.6)$$

$$= \frac{100h}{3\times10^{19}} \frac{1}{8} \times \frac{3\times10^7 \text{ s}}{1 \text{ year}}$$

$$= \frac{100h}{10^{12} \text{ years}} = \frac{h}{10^{10} \text{ years}}$$

$$t = 10^{10} h^{-1} \text{ years}$$

$$12.5 \le t \le 17 \text{ Gyr}$$

$$1 \, \text{Gyr} = 10^9 \, \text{years}$$

The age of the elements

- Elements come in different isotopes (same # of protons, different number of neutrons)
- Many isotopes are radioactive they decay
- If start with N(0) nuclei, after a time t, the number will be

$$N(t) = N(0) 2^{-t/\tau_{1/2}}$$

$$\tau_{1/2}$$
 is the half-life

Can use radioactive isotopes to date objects Radio dating nucleocosmochronology

¹⁴C dating

- Carbon has two main isotopes ¹²C and ¹⁴C
- ¹⁴C (6 protons + 8neutrons) is unstable
 - half life of 5,746 years
- 12C (6 protons +6 neutrons) is stable
 - it doesn't decay

$$N_{14}(t) = N_{14}(0) 2^{-t/5746 \text{ years}}$$

$$N_{12}(t) = N_{12}(0)$$

$$\frac{N_{14}}{N_{12}}(t) = \frac{N_{14}}{N_{12}}(0) 2^{-t/5746 \text{ years}}$$

il Duomo di Torino (1498) la Cappella della Santa Sindone e sullo sfondo la Mole Antonellian

Turin Cathedral, Holy Shroud Chapel and Mole Antonelliana

The Shroud of Turin

Caesar's Palace

The Shroud of Vegas

The Shroud of Vegas—25 years old?

- Peanut butter contains ¹²C and ¹⁴C
- ¹²C is stable and ¹⁴C is unstable half-life of 5,746 years

$$\frac{N_{14}}{N_{12}}(t) = \frac{N_{14}}{N_{12}}(0) 2^{-25 \text{ years/} 5746 \text{ years}}$$

$$=\frac{N_{14}}{N_{12}}(0) 2^{-0.004} = 0.997$$

The Shroud of Vegas—25 years old?

- B-B-Q sauce contains ²³Na and ²⁰Na
- ²³Na is stable and ²⁰Na is unstable half-life of 0.4 seconds

$$\frac{N_{20}}{N_{23}}(t) = \frac{N_{20}}{N_{23}}(0) 2^{-25 \text{ years/0.4 seconds}}$$
$$= \frac{N_{20}}{N_{23}}(0) 2^{-1,811,250,000} \approx 0$$

The Shroud of Vegas—25 years old?

- Hair mousse contains ¹H and ³H
- ¹H is stable and ³H is unstable half-life of 12.5 years

$$\frac{N_3}{N_1}(t) = \frac{N_3}{N_1}(0) 2^{-25 \text{ years/12 years}}$$

$$= \frac{N_3}{N_1}(0) \ 2^{-2} = \frac{N_3}{N_1}(0) \times \frac{1}{4}$$

Moral: use an isotope with appropriate half-life

Appropriate: half-life approximately the age of the sample

$$au_{1/2}(^{238}\text{U}) = 4.5 \,\text{Gyr}$$
 $au_{1/2}(^{187}\text{Re}) = 40 \,\text{Gyr}$
 $au_{1/2}(^{232}\text{Th}) = 14 \,\text{Gyr}$

Age of the elements 10 – 18 Gyr

$$t = 10^{10} h^{-1}$$
 years
 $12.5 \le t \le 17$ Gyr
 $1 \text{ Gyr} = 10^9$ years

Hubble's original value:

$$H_0 = 500 \text{ km s}^{-1} \text{ Mpc}^{-1}$$
 $h = 5$

$$t = 10^{10} h^{-1} \text{ years}$$
$$t = 2 \text{ Gyr}$$

The universe is radiant.

Arno Penzias Robert Wilson 1965

Cosmic background radiation

 $T = 3K = -454^{\circ}F$

Cosmic Radiation ca. 1960s

2° 3° 4°

Cosmic Radiation ca. 1975

2.997° 3° 3.003°

Cosmic Radiation 1992

